A new susceptibility-weighted image reconstruction method for the reduction of background phase artifacts.
نویسندگان
چکیده
PURPOSE To significantly reduce the background phase effects, especially at the air-tissue interface, and to enhance the desirable local structures of veins in susceptibility-weighted imaging. METHODS In the proposed reconstruction method called Magnitude of Complex Filtering, a complex-valued magnetic resonance image is acquired using a flow-compensated high-resolution 3D gradient-echo sequence and the magnitude of the complex-valued image is set to 1 so that the phase information, which contains details of the local susceptibility, is emphasized. Then, the nonlinear filter of the Magnitude of Complex Filtering method is applied to the complex-valued image with a constant magnitude. This filter utilizes the magnitude of the low-pass and high-pass filtered complex data to selectively reduce the background phase effects while enhancing the local structures. The filter output is then processed to generate a susceptibility-weighted image. RESULTS Compared with the conventional susceptibility-weighted images generated by a homodyne high-pass filter, the susceptibility-weighted images from the proposed Magnitude of Complex Filtering method show significant improvement; the undesirable artifacts at the air-tissue interface regions and the brain boundaries are significantly reduced, while the contrast of the local structures of veins is enhanced. CONCLUSION The Magnitude of Complex Filtering method successfully reduced most background phase effects without requiring additional processing or scan time.
منابع مشابه
Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملImproved susceptibility weighted imaging method using multi-echo acquisition.
PURPOSE To introduce novel acquisition and postprocessing approaches for susceptibility weighted imaging (SWI) to remove background field inhomogeneity artifacts in both magnitude and phase data. METHODS The proposed method acquires three echoes in a three-dimensional gradient echo (GRE) sequence, with a field compensation gradient (z-shim gradient) applied to the third echo. The artifacts in...
متن کاملSusceptibility map-weighted imaging (SMWI) for neuroimaging.
PURPOSE To propose a susceptibility map-weighted imaging (SMWI) method by combining a magnitude image with a quantitative susceptibility mapping (QSM) -based weighting factor thereby providing an alternative contrast compared with magnitude image, susceptibility-weighted imaging, and QSM. METHODS A three-dimensional multi-echo gradient echo sequence is used to obtain the data. The QSM was tra...
متن کاملEvaluation of Metal Artifact Reduction software in Computed Tomography
Introduction: The image quality of computed tomography (CT) can be seriously lowered by metal implants of patients. These implants are known to exert a significant impact on diagnostic accuracy due to artifacts. The current study aimed to assess the usefulness of Metal Artifact Reduction (MAR) software in the reduction of metal artifacts, in comparison to iterative rec...
متن کاملAssessment of simulated patient motion and its effect on myocardial perfusion SPECT using two reconstruction methods (Filtered Backprojection;FBP and Iterative method) [Persian]
Introduction: Motion of the patient during myocardial perfusion SPECT could potentially results in false perfusion defects. The effect of different reconstruction methods on these artifacts is not studied. Clarification of the relation between the extent, severity and duration of motion with the resultant artifacts may be helpful in designing special soft wares for motion correction. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 71 3 شماره
صفحات -
تاریخ انتشار 2014